
Approaches, Methods, and Tools

DevSecOps Environment
Securing the

2 | White Paper

EXECUTIVE SUMMARY

DevOps is enabling faster deployment and more secure software for devices by tightly

coupling development and operations functions. Much of the security focus is on “shifting

left” the security testing in the development lifecycle of the software. However, to put the

“Sec” (security) into DevSecOps, the development environment of that DevSecOps pipeline

itself must first be secured.

This paper provides a summary of:

• A security assessment of the essential elements of a DevSecOps environment
• The methods used in securing the environment, including:

 – Hardware security module/Private certificate authority
 – Identity management/Privileged access management
 – Mutually authenticated communications
 – Security validation tools
 – Event logging/Security information and event management
 – Zero trust network principles

• Practical usage of the distributed, immutable, and ephemeral (DIE) principles in furthering
the security of the DevSecOps environment

• Lessons learned in engaging a third-party penetration test company to confirm that the
DevSecOps environment is, indeed, secure

TABLE OF CONTENTS

Executive Summary. 2
Introduction . 3
Security Strength . 3
Security Assessment of the DevSecOps Environment . 3

 Hardware Security Module and Private Certificate Authority . 4

 Identity Management/Privileged Access Management . 5

 Mutually Authenticated Communications . 6

 Security Validation Tools . 6
Event Logging/Security Information and Event Manager . 7
Zero Trust Network Principles . 7
DIE Principle Application . 8
Third-Party Penetration Testing . 8
Conclusion . 9

SECURING THE DEVSECOPS ENVIRONMENT: APPROACHES, METHODS, AND TOOLS

3 | White Paper

INTRODUCTION

The recent compromise1 of a prevalent networking monitoring

system brings to the forefront the need to secure the development

environment. Companies are now beginning to realize the value of

having a secured DevSecOps environment.

As developers shift security left in the lifecycle, the bad actors and

attackers are following suit, shifting their attacks further left in the

same lifecycle. Information available at the time of this writing

regarding this supply chain attack indicates that attackers inserted

malicious source code into the development pipeline of the network

monitoring tool. By focusing the attack at the development pipeline

of the product, the malicious activity went unnoticed and the

resulting binary image(s) were digitally signed by the vendor’s code

signing key. This created the illusion that the distributed code was

authentic and validated from the vendor. Unsuspecting customers

received “signed” binaries containing the compromised code, thus

enabling the attacker’s impact on thousands of victims.

On the surface, securing the development environment sounds

like a straightforward request: Authenticate users, enable access

controls on the repositories, and keep log files. However, an initial

survey of the various specifications and best practices related to a

DevSecOps environment yields a much longer list:

• DoD Enterprise DevSecOps Reference Design
• Application Container Security Guide (NIST 800-190)
• DoD Cloud Computing Security Requirements Guide
• Committee on National Security Systems Policy 15 (CNSSP 15)
• Container Image Creation and Deployment Guide
• Digital Signature Standard (FIPS 186-4)
• DoD Container Hardening Guide
• Guide to Computer Security Log Management (NIST 800-92)
• Guidelines for the Selection, Configuration, and Use of Transport

Layer Security (TLS) Implementations (NIST 800-52)
• Privileged Account Management for the Financial Services Sector

(NIST 1800-18A)
• Protecting Controlled Unclassified Information in Nonfederal

Systems and Organizations (NIST 800-171)
• Security and Privacy Controls for Federal Information Systems

and Organizations (NIST 800-53)
• Zero Trust Architecture (NIST 800-207)

The requirement list lengthens in the support of the three

configurations that must be supported by the DevSecOps

environment:

• Fully on-premises
• Cloud based
• Hybrid configuration

SECURITY STRENGTH

Security strength is defined2 as the number of operations required

to break a cryptographic algorithm or system. When the goal is to

achieve a security strength of 256 bits, these larger cryptographic

key sizes can have a negative impact on performance. In reviewing

Annex B of CNSSP 15, along with Tables 2, 3, and 4 within NIST

SP800-57 (Recommendations for Key Management), Part 1,3 as

guidance, the following cryptographic functions were selected:

• SHA-256, 128 bits of security strength
• RSA-4096, > 128 bits of security strength

A security strength of 128 bits is identified by NIST as “Acceptable”

for both “through 2030” and “2031 and beyond.”4

RSA-4096 was chosen over RSA-3072 as the standard signature

algorithm based on the combination of security strength,

intersecting support by the components within the DevSecOps

environment, NIST compliance, certificate authority (CA), and

hardware security module (HSM) support. Security strength can be

calculated using the following equation:5

Where L is the key size — in this case, 4096 — the equation defines

a security strength of 149.73 bits. However, the security strength of

a digital signature (hash function + digital signature algorithm) falls

to the weakest algorithm and key sized used.6

RSA was chosen over elliptic curve cryptography due to the

perceived backdoor created by a U.S. agency.7

SECURITY ASSESSMENT OF THE DEVSECOPS
ENVIRONMENT

While many types of threat models exist,8 each results in the

following:

• Identification of the assets
• Identification of vulnerabilities to those assets
• List of security implementations to protect the asset from each

vulnerability or group of vulnerabilities
• List of security-related events to be logged

SECURING THE DEVSECOPS ENVIRONMENT: APPROACHES, METHODS, AND TOOLS

To determine the list of assets, a typical DevSecOps environment9

is represented as shown in Figure 1:

Figure 1. Typical DevSecOps environment

This diagram highlights several assets of the DevSecOps

environment that need to be secured, including:

• The repositories
 – Code, local artifact, and released artifact repositories

• The software components
 – IDE, repos, development, and test components

• The build tools themselves:
 – Compilers and linkers

• The connectivity between the components
• The configuration of each component
• The storage elements of these components:

 – For both an on-premises and a cloud-based environment
• The event logs of all components

One asset not shown on the “typical” DevSecOps environment

diagram is that of the hardware security module (HSM). The HSM

is a physical computing device that safeguards and manages

digital keys and performs encryption and decryption functions for

digital signatures, strong authentication, and other cryptographic

functions.10

To determine the vulnerabilities, we can start with a definition:11

“The term information security means protecting information and

information systems from unauthorized access, use, disclosure,

disruption, modification, or destruction....” These unauthorized

events can be attacks on the DevSecOps system.

Figure 2 identifies the asset vulnerable to each unauthorized event.

This list shows the types of attacks from which each asset must

be protected and is foundational for determining the security

implementations required to protect each asset.

Figure 2. Types of attacks from which each asset must be protected

Multiple technologies are brought together to secure a DevSecOps

environment. The capabilities of each are shown in Figure 3.

Figure 3. Capabilities of technologies to mitigate identified attacks

The following sections break down the capability of each technology

and its application in securing the DevSecOps environment.

Hardware Security Module and Private Certificate
Authority

The HSM provides the root of trust for the DevSecOps environment.

The HSM is a purpose-built FIPS 140-2/3 Level 3–certified12

cryptographic system and provides the processing for critical

cryptographic operations in the DevSecOps environment. These

cryptographic operations include:

• All cryptographic keying material, including X.509 certificates:
 – Code signing asymmetric keys
 – Symmetric key for optional image encryption
 – X.509 certificate generation for mutually authenticated TLS

• Integrity seal for released artifact objects

The HSM is a Public Key Cryptography Standard (PKCS)

4 | White Paper

Code,
Scripts

IDE Integration &
Pre-production

Environment

Pipeline 1

Pipeline 2

Pipeline 3

SOFTWARE FACTORY

Software Factory Pipeline

Software Factory Tools

Data Flow

Pipeline Control

Control Gate

Code,
Repo

Local
Artifact
Repo

Dev
Environment

Dev
Environment

Dev
Environment

Test
Environment

Test
Environment Released

Artifact
Repo

Test
Environment

CD

CI

CI

CI

Release
Package

TECHNOLOGY CAPABILITY

Account
Management

Audit and
Compliance

Config, Vulnerability,
and CVE Scanning

Encrypted and Authenticated
Communications

Image Signing, Certificate Generation,
Key Management

Human and Machine Authentication

Secrets Generations and Storage

PAM

SIEM

Tooling / Automation

Mutually Authenticated
Transport Layer Security (mTLS)

Private Certificate Authority

Hardware Security Module

Identity Management

Asset Unauthorized

Access Use Disclosure Disruption Modification Destruction

Repositories x x x x

Software
Components

x x x

Build Tools x x

Connectivity x x x x x

Configuration x x x x

Persistent
Storage

x x x x x

Event Logs x x x x x

HSM x x x x x

SECURING THE DEVSECOPS ENVIRONMENT: APPROACHES, METHODS, AND TOOLS

#1113–compliant device. The interface to the HSM using only

PKCS#11 enables support for both a fully on-premises configuration

(by use of a physical HSM) or a cloud-based configuration (by use

of a cloud service provider HSM).

Integrated with the HSM is a private certificate authority (CA). The

CA provides the functionality of creation, verification, storage, and

revocation status of all X.509 certificates and interfaces to the

HSM via the PKCS#11 interface. The CA also tracks the revocation

status of all X.509 certificates within the DevSecOps system. Use

of the Onsite Certificate Status Protocol (OCSP) throughout the

environment verifies that all X.509 certificates are valid.

Cryptographic key hierarchy for the DevSecOps environment is

shown in Figure 4. Cryptoperiods for X.509 certificates used in the

DevSecOps environment typically align to the recommendations.

However, the TLS and SSH certificates have a significantly shorter

lifespan than that of a standard authentication key. These certificates

span no more than 24 hours to reduce the impact of a compromise.

Figure 4. Cryptographic key hierarchy for the DevSecOps environment

Figure 5 lists the summary of each key, the NIST key type, and

cryptoperiod.

Figure 5. Cryptographic key attributes

Note that due to the controlled and managed nature of the

DevSecOps environment, neither a Registration Authority (RA) nor

a Verification Authority (VA) are required. The act of verifying a

certificate is not applicable because the COMSEC lead initiates and

manages the key hierarchy for the environment. All components

within the DevSecOps environment are known entities.

Identity Management/Privileged Access Management

Identity and access management (IdAM) of users is a vital

component of securing the DevSecOps environment, just as it

is in an IT environment. The components within the DevSecOps

environment are large in number and dynamic by design. Without

careful orchestration of which accounts have access and privileged

access to these components, catastrophic results can ensue. The

DevSecOps environment should be firewalled off from the rest

of the corporate network and require access via a virtual private

network (VPN) that has a limited connection period associated

with it. This approach begins the alignment to the principle of

least privilege by reducing the number of corporate users who can

access the DevSecOps environment.

Following are some definitions:

• A privileged command is executed on an information system
involving the control, monitoring, or administration of the system,
including security functions and associated security-relevant
information.

• A privileged account is one that can perform operations within a
platform without restriction.

• Privileged account management (PAM) is a domain within iden-
tity and access management (IdAM) that focuses on monitoring
and controlling the use of privileged accounts.14

• Privileged access management (PAM [overloaded acronym]) is
the summation of strategies and technologies for controlling
access to privileged accounts.

As access moves upward in terms of privilege, as shown in Figure

6, a defense-in-depth approach in protecting the DevSecOps

environment also increases.

Figure 6. Defense-in-depth approach to user management

5 | White Paper

Private CA
RSA-4096
Neither key leaves the HSM

Image Signing Key
RSA-4096

DevSecOps Communication Key
RSA-4096
Neither key leaves the HSM

DevSecOps Component TLS key pair
RSA-4096

DevSecOps SSH key pair
RSA-4096

Istio Intermediate Key Pair
RSA-4096

Web Server
RSA-4096
Only used for on-prem
configurations

Repository Key Pair
RSA-4096

Signs

Signs

Signs

Signs

Signs

N

N

Signs

Signs

(On-prem only)

Two-Person Control

Multifactor Authentication

VPN credentials

Privileged
Users

Elevated Users

Standard Users

Users with No DevSecOps
Environment Access

Key NIST Key
Type

Cryptoperiod Notes

Private CA Trust Anchor < 3 years Trust Anchor keys

Istio Key Pair Authentica-
tion

1 month Used as the intermediate key pair
for Istio to generate its certs

Web Server Authentica-
tion

< 2 years Only for fully on-premises configu-
rations

Repository Signature Unlimited Used to provide an integrity seal on
the released repo objects

Image Sign-
ing

Signature <2 years Signs delivered image files

Comms Key Authentica-
tion

1 year Basis of all lower-level keys
Public key never released

TLS Keys Authentica-
tion

Hours Certs regenerate and are con-
sumed by the container when the
container begins execution

SECURING THE DEVSECOPS ENVIRONMENT: APPROACHES, METHODS, AND TOOLS

The principle of least privilege is expanded from human accounts

to include service accounts as well. This is to minimize exposure

in case these accounts get compromised. Also, the incorporation

of multifactor authentication mechanisms must be employed for

elevated human accounts.

Taking the human users within a corporation into consideration, we

can apply a defense-in-depth approach in protecting access to the

DevSecOps environment, as listed in Figure 7.

Figure 7. User access defense-in-depth approach

Taking the intersection of the roles outlined in NIST SP1800-1815

along with National Initiative for Cybersecurity Careers and Studies16

and aligning those for a DevSecOps environment development

team, we arrive at a hierarchy as shown in Figure 8.

Figure 8. Access-driven hierarchy in a DevSecOps environment

Taking an access-driven hierarchy into consideration enables a

simplified alignment to the authorization of the commands that

each team member can perform in their day-to-day activities and

directly assists in the recognition of two-person authorization for

privileged commands within the DevSecOps environment.

Mutually Authenticated Communications

All communications within the DevSecOps environment are both

mutually authenticated and encrypted using Transport Layer

Security (TLS) version 1.2. Version 1.2 was required because not all

components used in the DevSecOps environment support version

1.3. Based on current NSA Guidance,17 cryptographic parameters

are to meet the algorithm requirements defined in Committee on

National Security Systems Policy (CNSSP) 15, which leads to a

subset of the NIST 800-52 cipher suites (with the removal of AES-

CBC ciphers18), to ensure perfect forward secrecy.19 Prioritizing the

resulting pruned list of cipher suites results in a very small subset:

• TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (0x00, 0x9F)
• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xC0, 0x30)

Though a very small set, it enables an intrusion detection event

to be defined. If a client tries to connect to a server with ciphers

outside of this list, it can indicate an attack. The same is true from

the client perspective: If the server responds with a cipher suite

mismatch error, that too indicates an attack.

TLS implementation between the user and the DevSecOps system

is dependent upon the DevSecOps environment configuration type.

For a hybrid or cloud-based configuration, a certificate provided by a

commercial PKI certificate vendor20 is used. For a fully on-premises

configuration, a self-signed certificate from the CA/HSM is used.

This type of certificate requires an update to each browser that

connects to the DevSecOps environment where the web server

certificate must be imported into the browser’s list of trusted root

certificate authorities.

Communications within the DevSecOps environment extends TLS

to use mutually authenticated TLS to ensure that both client and

server are authenticated. The service mesh Istio is configured for

mTLS21 and is restricted to the above-listed cipher suites.22

Security Validation Tools

The large number of components used in the DevSecOps

environment demands that automated security validation

tools be in place and tightly integrated into the development

and maintenance of the DevSecOps environment itself. While

DevSecOps is seen as “shifting left” the security-related testing of

the application development, the same tooling that the DevSecOps

environment pipeline provides to the application can be used to

maintain the DevSecOps environment itself, with frequent updates

and maintenance.

In looking at a Kubernetes-based configuration for a DevSecOps

environment, there are several areas that must be continuously

scanned, as shown in Figure 9.

6 | White Paper

Security
Architect

Enterprise Architect AAA Manager

Infrastructure
Team Lead

Tools
Team Lead

App
Team Lead

Infrastructure
Team

Tools
Team

App
Team

SIEM
Lead

CSP
Team Lead

COMSEC
Lead

Chief System
Engineer

(Authorizing Official)

Usage
Team

Cloud
Team

Billing
Team

Access Defense Layer

Corporate Network Corporate ID Credentials

DevSecOps Environment VPN Credentials

Elevated Commands MFA

Privileged Commands Two-Person Control

SECURING THE DEVSECOPS ENVIRONMENT: APPROACHES, METHODS, AND TOOLS

Figure 9. Security scanning components of a Kubernetes-based configuration

In addition to container applications, CVEs must be tracked for both

processors and boards used in the DevSecOps environment. While

the hardware components can be easily overlooked, careful review

and tracking of these issues must occur in parallel with the tracking

of the software-specific CVEs as they impact a container-based23

configuration.24

While the market has no shortage of tooling, one approach to

tooling is of categorization. The referenced U.S. DoD Enterprise

DevSecOps Reference Design25 contains a listing of different testing

tool categories. Initial priority should be given to the following

categories:

Figure 10. Initial DevSecOps environment testing tools

Ensure that all tools are properly configured and that no defaults26

carry forward into the DevSecOps environment.

EVENT LOGGING/SECURITY INFORMATION AND EVENT
MANAGER

Due to the large number of components within a DevSecOps

environment, a Security Information and Event Management (SIEM)

is required. The input to the SIEM are security events that occur

within each DevSecOps component, in the form of audit log entries.

The SIEM then ingests these security events and applies a set of

rules to determine whether the security policy of the DevSecOps

environment is being enforced or a violation has occurred. SIEM

rulesets can take the form of “if this, then that” for specific events,

and then models can be defined for more abstract scenarios.

Security-related events can be of extreme value to an attacker, as

they show what is being monitored and the responses to those

events. This requires that the log events must be protected while

being sent to and stored within the SIEM. Also, an integrity seal

must be applied over the log data to ensure that it is not modified

while it is archived. This integrity seal takes the form of a digital

signature, and the duration of this archiving can go for as long as

six years.27

It is of paramount importance that all components within the

DevSecOps environment synchronize time to a single time server

or a GPS time server and align to a single time zone (GMT). When

doing forensic analysis, it is important that the timeline of security

events can be accurately reconstructed to determine the violation

of the security policy.

ZERO TRUST NETWORK PRINCIPLES

A zero trust architecture (ZTA) is an enterprise cybersecurity

architecture that is based on zero trust principles and designed

to prevent data breaches and limit internal lateral movement.28 In

the past, architectures assumed that once a subject authenticates

into the system, it can be treated as trustworthy from that point

forward. ZTA does not rely on implied trustworthiness; it requires a

much more granular level of access to each resource and assumes

the attacker is present within the system.

Using the technologies defined in this paper, Figure 11 shows the

instantiation of the core zero trust components29 for a DevSecOps

environment.

Figure 11. Instantiation of the core zero trust components

The Continuous Diagnostics and Mitigation (CDM) program and

threat intelligence system can fall under the program’s vulnerability

management capability. This capability expands from the narrow

focus of CVE scanning to include asset identification/cataloging

along with threat intelligence feeds, as shown in Figure 12.

7 | White Paper

Worker Node

Podn

Pod1

Istio
Proxy

Container

Application

Base Image

kubelet Container Engine

Host (BIOS, OS)

Container

Application

Base Image

• Are unpatched CVEs present?
• mTLS communications used throughout?
• Do containers

 – Have hard-coded secrets?
 – Use root privilege?
 – Mount sensitive directories?
 –

 – Have resource limits set?
 – Have liveness probe?

•
 – Security Technical Implementation Guides
 – Center of Internet Security (OS) Benchmarks

• Host machine components patched and secured

IdAM, PAM, Istio

Vulnerability
Management

Numerous

Vulnerability
Management

Event Logs

CDM System

Industry
Compliance

Threat
Intelligence

Activity
Logs

Control Plane

Data Plane

VPN, Istio

PAM, Istio

HSM + CA

Identify
Management

SIEM

Policy Engine

Policy Administrator

Policy
Decision

Point

SIEM System

ID
Management

PKI

Data
Access
Policy

Policy
Enforcement

Point

Trusted
Subject System Enterprise

Resources
Untrusted

Tool Category Reasoning

Static Application Security
Test (SAST)

Verify code before deployment and
ensure all CVEs are patched

Network Testing Confirm network configuration

Container Policy Confirm containers align to a strong
security posture

Software License Compliance
Checker

Confirm no license violations

Security Compliance Tool Ensure components are configured to
industry standards

SECURING THE DEVSECOPS ENVIRONMENT: APPROACHES, METHODS, AND TOOLS

The inclusion of these data further enhances the ability of the

organization to perform the task of vulnerability management.

Automating the listing of assets (e.g., component and version

number) in the DevSecOps environment increases the accuracy

of CVE scanning processing. Incorporation of indicators of

compromise (IoC) provides a feedback loop affirming that the

vulnerability management capability is monitoring the correct

parameters within the environment.

Figure 12. Vulnerability management decomposition

DIE PRINCIPLE APPLICATION

The DIE principles30 are defined as follows:

• Distributed: Multiple systems supporting the same overarching
goal

• Immutable: Infrastructure that doesn’t change after it’s deployed
• Ephemeral: Infrastructure with a very short lifespan

While the distributed and immutable principles overlie on cloud-

native computing in general, the ephemeral principle demands

close examination for a DevSecOps environment.

“Ephemerality creates uncertainty for attackers.”31

Dramatically reducing the time that an orchestrated container

executes from the current average of .5 days32 to tens of minutes

limits the amount of damage that an attacker can accomplish. To

inject malware or even take complete control over a container that

is torn down within tens of minutes is a “whack-a-mole” game that

will frustrate even the most persistent attacker.

Enabling a short container lifespan directly supports:

• Simplified distribution of updated secrets without requiring a
container restart or ingestion processing

• The use of short-lived certificates to minimize the need for revo-
cation services and key compromise remediation

• Timely deployment of patched container vulnerabilities, not just
for the application but for the base image as well

THIRD-PARTY PENETRATION TESTING

“Penetration testing is a specialized type of assessment conducted

on information systems or individual system components to

identify vulnerabilities that could be exploited by adversaries.”33

As discussed, there are many moving parts to a DevSecOps

environment. Each of these parts and the interfaces to other parts

within the environment are doorways for attackers. The complexity

of this environment warrants both an internally and an externally

resourced pen test activity to aid in identifying vulnerabilities.

Having an external vendor that specializes in vulnerability discovery

provides enormous value to ensure the security of the DevSecOps

environment. Being rewarded for finding vulnerabilities is a

compelling reason for using external vendors.

The DevSecOps environment can be replicated in a separate

environment that provides a significant advantage over a production

environment. Having a separate environment allows the pen test

team to work unconstrained, compared to testing a production

system, for concern of interfering with the production system.

To maximize value of the pen test team, four levels of access are

used:

• None: Has the team test the system the way an outside attacker
would

• Standard: Allows the team to have access into the system to dis-
covery vulnerabilities, as a hacker would once the environment
is breached

• Elevated: Allows the team to access the second tier of privileged
functions within the environment

• Privileged: Ensures that the PAM definitions have been imple-
mented correctly to ensure that the most critical functions within
the system require a two-person workflow

These permission rings and attack vectors are shown in Figure 13.

 Fig. 13. Penetration testing account access

Vulnerability
Management Capability

Asset Identification
and Cataloging

CVE Identification
and Remediation

Threat Intelligence
Feeds

Repositories
Log Files CVE Scanning

Indicators of
Compromise
New Malware
Software Flaws

8 | White Paper

Standard

Outside Attacker

Malicious Insider

Privilege Escalation

DevSecOps Environment Permissions

Elevated

Privileged

SECURING THE DEVSECOPS ENVIRONMENT: APPROACHES, METHODS, AND TOOLS

CONCLUSION

As security testing becomes incorporated into the development

lifecycle, it is of paramount importance that the development

environment (the DevSecOps environment) itself be secured.

Several technologies have been presented and capabilities identified

that can be used as the foundation in securing the DevSecOps

environment. The combined use of an HSM, IdAM, mutually

authenticated encryption paths, scanning tools, security event

logging, and zero trust network principles strengthen the security

of the DevSecOps environment. Application of the DIE principles

extends the security posture of the secured environment by having

a short lifespan for each container in the environment. Finally, an

approach was presented to leverage third-party penetration vendors

to provide multifaceted security evaluation, based on user privilege

level, to verify the security policy of the DevSecOps environment.

This paper was written and presented at the Embedded World

Digital 2021 conference by Arlen Baker, Principal Security

Architect, Technology Office, Wind River®; and Matt Jones, Vice

President, Engineering, Wind River.

9 | White Paper

SECURING THE DEVSECOPS ENVIRONMENT: APPROACHES, METHODS, AND TOOLS

1. us-cert.cisa.gov/ncas/alerts/aa20-352a

2. csrc.nist.gov/glossary/term/security_strength

3. nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

57pt1r5.pdf

4. Ibid, Table 4

5. csrc.nist.gov/csrc/media/projects/cryptographic-module-

validation-program/documents/fips140-2/fips1402ig.pdf,

Section 7.5

6. csrc.nist.gov/csrc/media/projects/cryptographic-module-

validation-program/documents/fips140-2/fips1402ig.pdf,

section 5.6.2

7. ieeexplore.ieee.org/abstract/document/7782697

8. threatmodeler.com/threat-modeling-methodologies-

overview-for-your-business

9. dodcio.defense.gov/Portals/0/Documents/DoD%20

Enterprise%20DevSecOps%20Reference%20Design%20v1.0_

Public%20Release.pdf?ver=2019-09-26-115824-583, Figure 9

10. en.wikipedia.org/wiki/Hardware_security_module

11. www.govinfo.gov/content/pkg/USCODE-2011-title44/html/

USCODE-2011-title44-chap35-subchapIII-sec3542.htm

12. csrc.nist.gov/publications/detail/fips/140/3/final

13. docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-

base-v2.40-os.html

14. www.nccoe.nist.gov/sites/default/files/library/sp1800/fs-pam-

nist-sp1800-18-draft.pdf

15. nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

53r5.pdf, AC-3 (2)

16. niccs.cisa.gov/workforce-development/

cyber-security-workforce-framework

17. media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/

ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF

18. nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

52r2.pdf, section 3.3.2

19. Ibid, Appendix D

20. dl.dod.cyber.mil/wp-content/uploads/pki-pke/pdf/unclass-ss_

using_commercial_pki_certificates.pdf, Figure 6

21. istio.io/latest/docs/reference/config/networking/

gateway/#ServerTLSSettings

22. Ibid

23. containerjournal.com/features/what-do-containers-have-to-do-

with-being-cloud-native-anyway

24. meltdownattack.com

25. dodcio.defense.gov/Portals/0/Documents/DoD%20

Enterprise%20DevSecOps%20Reference%20Design%20

v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583, tables

8 through 10

26. www.bleepingcomputer.com/news/security/fbi-hackers-stole-

government-source-code-via-sonarqube-instances

27. www.hhs.gov/hipaa/for-professionals/compliance-

enforcement/audit/protocol/index.html, 164.316(b)(2) (i) and

others

28. csrc.nist.gov/publications/detail/sp/800-207/final

29. Ibid, Figure 2

30. i.blackhat.com/USA-19/Wednesday/us-19-Shortridge-

Controlled-Chaos-The-Inevitable-Marriage-Of-DevOps-And-

Security.pdf

31. Ibid

32. www.datadoghq.com/docker-adoption

33. csrc.nist.gov/publications/detail/sp/800-53/rev-5/final

SECURING THE DEVSECOPS ENVIRONMENT: APPROACHES, METHODS, AND TOOLS

REFERENCES

Wind River is a global leader of software for the intelligent edge. Its technology has been powering the safest, most secure devices since 1981 and is in billions of products. Wind River is accelerating
the digital transformation of mission-critical intelligent systems that demand the highest levels of security, safety, and reliability.

© 2021 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. Rev. 04/2021

https://us-cert.cisa.gov/ncas/alerts/aa20-352a
https://csrc.nist.gov/glossary/term/security_strength
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
http://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf
http://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf
https://ieeexplore.ieee.org/abstract/document/7782697
http://threatmodeler.com/threat-modeling-methodologies-overview-for-your-business
http://threatmodeler.com/threat-modeling-methodologies-overview-for-your-business
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583
https://en.wikipedia.org/wiki/Hardware_security_module
https://www.govinfo.gov/content/pkg/USCODE-2011-title44/html/USCODE-2011-title44-chap35-subchapIII-sec3542.htm
https://www.govinfo.gov/content/pkg/USCODE-2011-title44/html/USCODE-2011-title44-chap35-subchapIII-sec3542.htm
https://csrc.nist.gov/publications/detail/fips/140/3/final
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
http://www.nccoe.nist.gov/sites/default/files/library/sp1800/fs-pam-nist-sp1800-18-draft.pdf
http://www.nccoe.nist.gov/sites/default/files/library/sp1800/fs-pam-nist-sp1800-18-draft.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r5.pdf
https://niccs.cisa.gov/workforce-development/cyber-security-workforce-framework
https://niccs.cisa.gov/workforce-development/cyber-security-workforce-framework
http://media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF
http://media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://dl.dod.cyber.mil/wp-content/uploads/pki-pke/pdf/unclass-ss_using_commercial_pki_certificates.pdf
https://dl.dod.cyber.mil/wp-content/uploads/pki-pke/pdf/unclass-ss_using_commercial_pki_certificates.pdf
https://istio.io/latest/docs/reference/config/networking/gateway/#ServerTLSSettings
https://istio.io/latest/docs/reference/config/networking/gateway/#ServerTLSSettings
https://containerjournal.com/features/what-do-containers-have-to-do-with-being-cloud-native-anyway/
https://containerjournal.com/features/what-do-containers-have-to-do-with-being-cloud-native-anyway/
https://meltdownattack.com/
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583
https://dodcio.defense.gov/Portals/0/Documents/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20v1.0_Public%20Release.pdf?ver=2019-09-26-115824-583
http://www.bleepingcomputer.com/news/security/fbi-hackers-stole-government-source-code-via-sonarqube-instances
http://www.bleepingcomputer.com/news/security/fbi-hackers-stole-government-source-code-via-sonarqube-instances
https://www.hhs.gov/hipaa/for-professionals/compliance-enforcement/audit/protocol/index.html
https://www.hhs.gov/hipaa/for-professionals/compliance-enforcement/audit/protocol/index.html
https://csrc.nist.gov/publications/detail/sp/800-207/final
https://i.blackhat.com/USA-19/Wednesday/us-19-Shortridge-Controlled-Chaos-The-Inevitable-Marriage-Of-DevOps-And-Security.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Shortridge-Controlled-Chaos-The-Inevitable-Marriage-Of-DevOps-And-Security.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Shortridge-Controlled-Chaos-The-Inevitable-Marriage-Of-DevOps-And-Security.pdf
https://www.datadoghq.com/docker-adoption/
https://csrc.nist.gov/publications/detail/sp/800-53/rev-5/final

